Rock Fragmentation Prediction Using an Artificial Neural Network and Support Vector Regression Hybrid Approach
نویسندگان
چکیده
While empirical rock fragmentation models are easy to parameterize for blast design, they usually prone errors, resulting in less accurate fragment size prediction. Among other shortfalls, these may be unable accurately account the nonlinear relationship that exists between input and output parameters. Machine learning (ML) algorithms potentially able better relationship. To this end, we assess potential of multilayered artificial neural network (ANN) support vector regression (SVR) ML techniques Using geometric, explosives, parameters, build ANN SVR predict mean size. Both yield satisfactory results show higher performance when compared with conventional Kuznetsov model. We further demonstrate an automated means analyzing a varied number hidden layers using Bayesian optimization Keras Python library.
منابع مشابه
Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملPrediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods
Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...
متن کاملRock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis
The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...
متن کاملPrediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mining
سال: 2022
ISSN: ['2673-6489']
DOI: https://doi.org/10.3390/mining2020013